

17330

16117									
3 Hours / 100 Marks	Seat No.								
Instructions : (1) All ((2) Illus (3) Figu (4) Assu (5) Use perm	questions are com strate your answer ares to the right in ame suitable data, of Non-program nissible .	pulso rs with dicate , if new mable	ry . 1 neat e full cessat e Eleo	sketci marks ry. ctroni	hes wi c Poo	herev cket (e r neco Calcul	essary ator 1	v. İs
1 A) Attempt on sive of following	o •							Ν	Marks
1. A) Auempt any six of following	5.								12
 Define big O Notation. Define data structure and 	· · · · · · · · · · · · · · · · · · ·								
2) Define data structure and g	give its classificatio	n.							
3) Define searching. Give its	type.								
4) Define Recursion. State a	ny two application	where	recur	sion us	sed.				
5) Define following W.V.T. t	ree								
a) Ancestor									
b) Descendant nodes									
6) Define following W.V.T. tr	ree								
a) In-degree									
b) Out-degree									
7) State any four sorting tech	inique.								
8) List any four application of	of graph.								
B) Attempt any two of following	gs :								8
1) What is complexity of an a	algorithm ? Describ	be time	comp	olexity	and s	pace c	omple	xity.	
 Describe binary search alg algorithm. 	gorithm. Give exam	ple to	search	n an el	ement	using	binary	v searc	h

3) Describe circular queue. Give its advantage.

[2]

Marks

- 2. Attempt any four of following :
 - a) Describe working of inserting sort. Demonstrate working of insertion sort algorithm to sort 6 elements.
 - b) Find out prefit equivalent of the following expression :
 - i) [(A+B)+C]*D ii) A[(B*C)+D]
 - c) Write an algorithm to insert a new node as the last of a singly linked list. Give example.
 - d) Describe concept of Binary tree. State its application.
 - e) Write a program to insert element in queue.
 - f) Write a program to search an element in an array. Display position of element.
- 3. Attempt **any four** of followings :
 - a) Describe PUSH and POP operation on state using array representation.
 - b) What is priority queue ? Describe working of priority queue with suitable example.
 - c) Describe working of doubly linked list. Write syntage used for double linked list in program.
 - d) Write algorithm for morder traversal for Binary tree. Demonstrate with suitable example.
 - e) Draw tree structure for following expression. $[3A + 7B] - [(6D - 4E)^{\wedge}, 6C]$
 - f) What is collision resolution techniques? State its types.
- 4. Attempt **any four** of followings :
 - a) Compare Top-down approach v/s Bottom-up approach [any four points].
 - b) How stack is used in Recursion ? Describe with suitable example.
 - c) Write a code delete an element in queue.
 - d) Define following terms :
 - i) Node ii) Null pointer
 - iii) Empty list iv) Information
 - e) Write an algorithm to traverse a singly linked list.
 - f) Describe general tree and binary tree.

16

16

- 5. Attempt any two of following :
 - a) Sort following elements by Radix sort algorithm
 - 87.3, 2.34, 7.29, 3.59, 45.8, 3.79, 3.20, 422.
 - b) Convert the given infit expression to postpix expression using stack and the details of stock at each step of conversion.

[3]

EXPRESSION P * Q \uparrow R - S/T + [U/V]

- c) Describe DFS with suitable examples.
- 6. Attempt any two of following :
 - a) How stack TS useful in reversing a list ? Write a C program to reverse a list using stack.
 - b) Write a program to calculate number node in binary search tree.
 - c) Consider the graph 'G' in fig.
 - i) Find all simple paths from C-A.
 - ii) Find all simple paths from D-B.
 - iii) Find indeg [B] and outdeg [C].
 - iv) Find the adjacency matrix A for graph.
 - v) Give adjacency list representation of graph.

17330

17330

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No	Q. N.		Scheme
•			
1.	A)	Attempt any six of the following :	12
	1)	Define Big 'O' Notation.	2M
	Ans:	Big O is a mathematical notation that represents time complexity of an algorithm. O stands for order of term.	(Definition : 2 marks)
	2)	Define data structure and give its classification.	2M
	Ans:	 A data structure is a specialized format for organizing and storing data. i) Data can be organized in many ways and data structures is one of these ways. ii) It is used to represent data in the memory of the computer so that the processing of data can be done in easier way. iii) Data structures is the logical and mathematical model of a particular organization of data 	(Definition: 1 mark, classification: 1 mark)

Model Answer

	Classification:	
	Data Structure	
	Primitive data Structure Non- Primitive data Structure	
	Int char float linear data structure non-linear data structure	
	Stack queue tree graph	
3)	Define searching Cive its type	2M
3)	Define searching. Give its type	2111
Ans:	It is the process of finding a data element in the given data structure.	(Definition:1
	1 Linear search	mark, types:1
	2. Binary search	mark)
4)	Define recursion State any two application where recursion used	2M
-,	(**Note: Any other application also to be considered **)	2111
Ans:	Recursion is the process of calling function by itself. A recursive function body contains	(Definition: 1
	runction can statement that cans itsen repeatedry.	mark, two applications:1/
	Applications:-	2 mark each)
	1. To compute GCD	
	2. To display Fibonacci series	
5)		214
5)	Define following w.r.t tree	2111
	a) Ancestor	
	b) Descendant nodes	
Ans:	a) Ancestor: All the nodes that are along the path from root node to a particular node	(Definition
	are called as ancestor of that particular node, that is parent nodes are ancestor nodes.	of each
	b) Descendant nodes: All the nodes that are reachable from the root node or parent	term:1 mark)
	node are the descendant nodes of that parent node or root node.	

Model Answer

6)	Define following w.r.t tree	2M
	a) In-degree	
	b) Out - degree	
Ans:	 a) In-degree: - In degree of a node is number of edges coming towards the node. b) Out-degree: - Out degree of a node is number of edges going out from the node. 	(Definition of each term: 1 mark)
 7)	State any four sorting technique.	2M
Ans:	1. Bubble sort	(Any four
	2. Selection sort	techniques:1/ 2 mark each)
	3. Insertion sort	
	4. Radix sort	
	5. Shell sort	
	6. Quick sort	
	7. Merge sort	
8)		2M
 ·	List any four application of graph.	(A F
Ans:	1. To represent road map	(Any jour applications:1
	2. To represent circuit or networks	/2 mark each)
	3. To represent program flow analysis	
	4. To represent transport network	
	5. To represent social network	
	6. Neural networks	
D)	Attempt one two of the following:	ON /
В)	Attempt any two of the following:	δινι
1)	What is complexity of an algorithm? Describe time complexity and space complexity.	4M
	[Example optional]	
Ans:		(Definition of
	Complexity of an algorithm:	complexity:1m ark.
	The complexity of an algorithm is a measure that describes its efficiency in terms of amount of time and space required for an algorithm to process.	description of time

Model Answer

	 Time complexity:- Time complexity of an algorithm is the amount of computer time required to execute an algorithm. Example: Consider three algorithms given below:- Algorithm A: - a=a+1 Algorithm B: - for x = 1 to n step 1 a=a+1 Loop Algorithm C: - for x=1 to n step 1 for y=1 to n step 1 a=a+1 Loop Frequency count for algorithm A is 1 as a=a+1 statement will execute only once. Frequency count for algorithm B is n as a=a+1 is key statement executes n time as the loop runs n times. Frequency count for algorithm C is n as a=a+1 is key statement executes n2 time as the inner loop runs n times, each time the outer loop runs and the outer loop also runs for n times. Space complexity:- Space complexity of an algorithm is the amount of memory required for an algorithm. The space needed by the program is the sum of the following components:- Fixed space requirements: - It includes space for instructions, for simple variables, fixed size structured variables and constants. Variable space requirements: - It consists of space needed by structured variables whose size depends on particular instance of variables. 	complexity:1 ^{1/2} marks, space complexity:1 ^{1/2} mark)
 2)	Describe binary search algorithm. Give example to search an element using binary	
	search algorithm.	
Ans:	Binary search algorithm: Binary search requires sorted list to perform searching. First find the lower index and upper index of an array and calculate mid with the formula (lower+upper)/2.Compare the search element with mid position element. If both are equal then stop the search process. If both are not equal then divide list into two parts. If the search element is less than mid position element then change the upper index value and use first half of the list for further searching process. If the search element is greater than mid position element than change the lower index value and use second half of the list for further searching process. Again find lower and upper index value is less than or equal to upper index value.	(Description:2 marks, Example: 2 marks)

Subject Code:

 											_	·
	Example:											
	Input str	ring:- 10,	20,30,4	10,50,60),70,80,9	90,100						
	Search e	Search element: - 80 (S)										
	Array X [10]: used to store elements, lower is lower index of array, upper is upp									s upper		
	index of array.											
	Sten 1.											
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $									1		
	$\Lambda[0]$	Δ[1]	$\Lambda[2]$	Δ[3]	Δ[4]	$\Lambda[J]$	Λ[0]	Δ[/]	Λ[0]	Δ[9]		
	10	20	30	40	50	60	70	80	90	100	-	
											-	
	Lower=	0, upper=	=9 ; mio	d = 9/2 = 4	1.5=4							
	S! =X [4	4] i.e. 80	! =50									
	80>50 s	o lower=	lower+	-1=5								
	Stop 2.											
	$\frac{\operatorname{Step 2.}}{\operatorname{Y[5]}}$	X [6]		71	X [8]	X [0]]					
	$\Lambda[J]$	Λ[0]	Δ	_/]	Δ[0]	Λ[9]						
	F	G	H	H	Ι	J						
	lower=5	, upper=	9; mid=	=5+9/2=	= /							
	S=X[/]	1.e 80=8	50 .1									
	Search	successiu	1.									
3)	Describe cir	cular qu	eue. G	ive its a	advanta	iges.						4M
		-				0						(Description · 3
	A circular qu	eue is a l	inear da	ata struc	ture who	ere it stor	e all ele	ments ir	a speci	fic orde	r. It has	(Description: 5 marks any
Ans:	two ends from	nt and rea	ar where	e front i	s used t	o delete	an eleme	ent and	rear is u	sed to in	nsert an	marks, any
	element. Th	e last loo	cation of	of circul	lar queu	e is con	nected t	o first l	ocation	of the s	ame. It	
	follows circular path while performing insertion and deletion.									aavantage:1		
				,		6						mark)
					ma	X = 5		,				
					al	4]	que au					
				6	E	\sim						
			aſ	37	\searrow	\prec	aro]					
			~L	JD	(€-fu	ont				
					-{	\sum						
				$\langle \rangle$	\sim	B						
				a[2]								
						all						

		 Advantage:- It allows insertion of an element in a queue when queue has empty space in it. Before insertion, it checks for circular queue full. If queue is not full then it performs insert operation to add man element in it. 	
2.		Attempt any four of the following :	16
	a)	Describe working of inserting sort. Demonstrate working of insertion sort algorithm to sort 6 elements.	4M
	Ans:	In insertion sort, sorting is done on the basis of shift and insert principle. In first pass, 1st index element is compared with o th index element. If o th index element is greater than 1 st index element then store 1 st index element into a temporary variable and shift o th index element to its right by one position. Then insert temporary variable value in o th position. In pass 2 compare 2 nd index element with o th index and then 1 st index elements. If required perform shift and insert operations. In each pass fix one position and compare it with all elements placed before it. Continue this process till last position element is compared with all elements placed before it.	(Description:2 marks, example:2 marks)

Subject Code:

		Pass 1 !	
		TI 25 15 5 24 1 30	
		15 25 5 24 1 30	
		Pass 2:	
		II 15 25 5 24 1 30	
		L	
		I2 5 15 25 24 1 30	
		Pass 3:	
		II 5 15 25 24 1 30	
		I ₂ 5 15 25 24 1 30	
		I3 5 15 25 24 1 30	
		5 15 24 25 1 30	
		Tuss 4: 2 II 5 15 24 25 130	
		TL TL Shift	
		I ₂ 5 15 24 25 30	
		-3 1 5 15 24 25 30	
		14 1 5 15 24 25 30	
		Pass 5	
		At the end of pass 4 the list is in sorted order.	
	b)	Find out prefix equivalent of the following expression:	4 M
		i) [(A + B)] + C] * D ii) A [(B*C)+D]	
1	1		

Ans:	1> [(A+B)+c] *D		· /	
	Infix string Read char	steelk	Predix storing	
	[(A+B)+c]*D D		D	
	*		D	
	C.	×	D	
		RK)	CD	
	Ţ	+	CD	
)			
		17		
	В	1-1-1-	BCD	
	+		BCD	
	A		ABCD	
			4	
	C	×		
		T T	TABED	
			* *(+ ¹¹ *) (2+8) (47.1	
	L	*	+ + ABCD	
	-		* ++ AB(D-	
		k		
		Prefix conversion:- *++	АВСЛ	

	MAHARASHTRA STATE	C BOARD OF TECHN (Autonomous) C - 27001 - 2005 Certifi	ICAL EDUCATION ed)	
	WINTER M	– 16 EXAMINA' odel Answer	Subject Code:	17330
	ii> AE (B*KC) 7D]	In 1		
	Infix storing Read char	steek	Prefix string	
	$A\Gamma(B*(c)+p]$			
	D	II	D	
	+	+1	D	
)	12-1	D	
		I		
	С	F	CD	
		*		
	*	0+17	CV	
	В	×	BCD	1
		J	VOCD	
	(古	H BCD	
			+ *BCD	
	A		At *BCD	
			×	
	Drefix co	nversion-A+*BCD		
(c)	Write an algorithm to insert a new no	de as the last of a	ı singly linked list. Giv	e 4M
Ans:	слашріс.			(Algorithm:
	Inserting node at last in the SLL (Steps) 1. Create New Node):		marks,
	2. Fill Data into "Data Field"			example:2 marks)
	3. Make it's "Pointer" or "Next Field"	' as NULL		
	4. Node is to be inserted at Last Positi	on so we need to the	raverse SLL up to Last N	ode.
	5. Make link between last node and ne temp -> link = new_node;	ew node		
L				Page 9 of 3

Ans:		
	Implementation insertion on Queue Using array:	
	#include <stdio.h></stdio.h>	(Correct logic
	#include <conio.h></conio.h>	:2 marks.
	#define max 3	correct
	int rear=-1:	
	int front=-1:	syntax:2
	int queue[max]:	marks)
	void insert():	
	void insert()	
	l int insert item:	
	if(rear-(max-1))	
	$\frac{\ln(1-\ln(1-1))}{\ln(1-\ln(1-1))}$	
	plinit (\ii queue is fuil),	
	{	
	printit (in enter element to be inserted:);	
	scant("%d",&insert_item);	
	rear=rear+1;	
	queue[rear]=insert_item;	
	if(tront=-1)	
	front=0;	
	}	
	}	
	}	
	void main()	
	{	
	insert();	
	}	
(f)	Write a program to search an element in an array. Display position of element.	4M
	[Linear search or binary search program shall be considered.]	
Ans:	Linear search:-	(Correct logic:
		2 marks,
	#include <stdio.h></stdio.h>	correct
	#include <conio h=""></conio>	syntax:2
	void main()	marks)
	$\int_{1}^{1} \sin (2\pi) dx = 100 - $	
	$\inf_{i=1}^{n} \lim_{t \to 1}^{n} (10, 20, 50, 70, 50, 00, 70, 00, 70, 100),$	
	printf("I INEAR SEARCH").	
	printf("\n INDIT I IST: \n").	
	$f_{0} = \frac{1}{2} \left(\frac{1}{1} + \frac{1}{1} + \frac{1}{1} \right),$	
	101(1-0,1<-9,1++)	


```
printf("%d\t",a[i]);
          printf("\nEnter search element:");
          scanf("%d",&num);
          for(i=0;i<=9;i++)
          {
          if(a[i]==num)
          ł
          printf("\n Element found at %d index position ",i);
          break:
          }
          }
          if(i=5)
          printf("\n Element not found");
          getch();
          }
                             OR
Binary search:-
        #include<stdio.h>
        #include<conio.h>
        void main()
        {
        int a[10] = \{10, 20, 30, 40, 50, 60, 70, 80, 90, 100\};
        int i,mid,num,upper=9,lower=0, flag=0;
        clrscr();
        printf("BINARY SEARCH");
        printf("\n INPUT LIST:-\n");
        for(i=0;i<=9;i++)
        printf("%d\t",a[i]);
        printf("\nEnter search element:");
        scanf("%d",&num);
        while(lower<=upper)</pre>
        mid=(upper+lower)/2;
        if(a[mid]==num)
        flag=1;
        printf("\n Element found at %d index position ",mid);
        break;
        }
        if(a[mid]>num)
        upper=mid-1;
        else
        lower=mid+1;
```


		$ \begin{cases} if(flag==0) \\ if(flag=0) \end{cases} $	
		printf("\n Element not found"); getch();	
		}	
3.		Attempt any four of the following	16
	a)	Describe PUSH and POP operation on stack using array representation.	4M
	Ans:	Stack is a linear data structure which follows Last-In First - Out (LIFO) principle where, elements are inserted (push) and deleted (pop) from only one end called as stack top. Push Algorithm: Step 1: [Check for stack full/ overflow] If stack top is equal to max-1 then write "Stack Overflow" return Step 2: [Increment top] top= top +1; Step 3: [Insert element] stack [top] = item; Step 4: return Pop Algorithm: Algorithm: Step 1: [Check for stack empty/ underflow] If stack top is equal to -1 then write "Stack Underflow" return Step 2: [Copy data] item=stack[top]; Step 3: [decrement top] top = top-1; Step 4: return $ \frac{a. PUSH 40}{a[0] a[1] a[2] a[3] a[4]} = \begin{bmatrix} a[3] a[4] \\ 10 & 20 & 30 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a[1] a[2] a[3] a[4] \\ 10 & 20 & 30 \\ 0 & 0 \end{bmatrix} $	(PUSH operation:2 marks & POP operation: 2 marks)

Subject Code:

 b)	What is priority queue? Describe working of priority queue with suitable example.	4 M
Ans:	 A priority queue is a queue in which the intrinsic ordering among the elements decides the result of its basic operations i.e. the ordering among the elements decides the manner in which Add and Delete operations will be performed. In a priority queue, 1. Each element is assigning a priority. 2. The elements are processed according to, higher priority element is processed before lower priority element and two elements of same priority are processed according to the order of insertion. (Represent either with array or linked list) Array representation: Array element of priority queue has a structure with data, priority 	(Priority queue: 1 mark, Working: 2 marks, Example :1 mark)
	and order. Priority queue with 5 elements:C,1,4B,3,2B,3,5A,4,1D,5,3	
	OR Start All B2. FCI2. All EIST NULL Above figure shows priority. Queue with 5 elements where B & C have same priority number. Each node in above priority queue contains three items.	4M
C)	program	41/1
Ans:	A doubly linked list is a linked list in which each node contains two links- one pointing to the previous node and pointing to the next node.	(Working: 2 marks, Example: 1
	Prey Data Next	mark, Syntax:1
	 Each node contains three parts. 1. Data: contains information. E.g.10, 20, etc. 2. Next pointer: Contains address of the next node. 3. Prev pointer: Contains address of the preceding node. 	mark)

Model Answer

Subject Code:

	Start Pointer Null Prev pointer The syntax for doubly linked list is-	
	Struct node { int data; Struct node *next, * prev; }	
d)	Write algorithm for morder traversal for binary tree. Demonstrate with suitable example. (**Note: Any Binary Tree Traversal shall be considered**)	4M
Ans:	Algorithm for Inorder Traversal: Step 1: Visit left subtree in inorder. Step 2: Visit root node. Step 3: Visit right subtree in inorder	(Algorithm: 2 marks, Example: 2 marks)
	Example:	
	Inorder traversal is: B, A, C. In this traversal method 1 st process left subtree, then root element & then right subtree. OR Algorithm for Preorder Traversal: Step 1: Visit root node. Step 2: Visit left subtree in preorder. Step 3: Visit right subtree in preorder.	

	f)	What is collision resolution techniques? Stat	te its types.	4M
	Ans:	 When the hash function generates the sam collision. Two records cannot be stored in the A method used to solve the problem of c techniques. Types: Open addressing Linear probing Quadratic probing Rehashing Chaining 	(Defining Collision resolution techniques:2 marks, Listing Types:2 marks)	
4.		Attempt any four of the following :		16
	a)	Compare Top-down approach v/s Bottom –	up approach[any four points].	4M
	Ans:	Top-down approach A top-down approach starts with identifying major components of system or program decomposing them into their lower level components & iterating until desired level of module complexity is achieved.	Bottom-up approach A bottom-up approach starts with designing most basic or primitive Component & proceeds to higher level components.	
		In this we start with topmost module & Incrementally add modules that is calls. Top down approach proceeds from the abstract entity to get to the concrete design	Starting from very bottom, operations That provide layer of abstraction are implemented. Bottom up approach proceeds from the concrete design to get to the abstract entity.	

	Top down design is most often used in designing brand new systems Bot used eng is figu desi Top-down approach is simple and not data intensive. Bot as v Top-down approaches are backward- looking. Bot forv Example is c programming. Exa	tom up design is sometimes d when ones reverse ineering a design; i.e. when one trying to ure out what somebody else igned in an existing system. tom-up approach is complex vell as very data intensive tom-up approaches are ward-looking.	
b)	How stack is used in Recursion? Describe with s	uitable example.	4 M
Ans:	 Recursion is calling a function from itself reperfunction is written inside the body of a function In the recursive call each time a function exerpeatedly. Each function contain local variables When a recursive function is called, before e local variables are saved in the data structure s variables values are copied to the stack. When the recursive function terminates one by stack and we get the result. Example: Factorial of number, Tower of Hanoi. Fint factorial (int no) { If (no==1) Return 1; Else Fact=fact*factorial(no-1); } 	eatedly. A function call to the recursive n. ecutes the same number of statements es. executing the same function again, the stack. This way in each execution local one each element is removed from the ibonacci Series	(Explanation of how stack used in recursion: 2 marks, Example:2 marks)
	 Fact= fact* factorial (no-1); This statement gives Each time when factorial function is called st variables and then next variable. If factorial of 5 2nd call 4 till the last call stack gets the element are pop & result is calculated. 	a recursive call to the function. tack stores the value of current local then first time stack will have 5 then in ent. Once it is empty all variable values	

c)	Write a code delete an element in queue.	4M
Ans:	Delete queue(&a, &front, &rear) Step 1: [check underflow] if front=-1 then write "queue empty" return otherwise go to Step 2 Step 2: [copy data] data=a[front] Step 3: [check front & rear pointer] if front=rear then front =rear=-1 otherwise front=front+1 Step 4: End/ return to calling function OR void deletion() { if(front==-1 front==rear+1) { printf("Queue is empty\n"); return; } item=q[front]; front=front+1; printf("Element deleted is::%d",item);	(Correct code: 4 marks)
	}	
d)	Define following terms:	4 M
	i) Node ii) Null pointer	
	iii) Empty list iv) Information	
Ans:	 i) Node: It is a data element which contains info as well as address of next node. ii) NULL pointer: It is used to specify end of list. The last element of list contains NULL pointer to specify end of list. iii) Empty list: A linked list is said to be empty if head (start) node contains NULL pointer. iv) Information: It is also known as data part. It is used to store data inside the node. 	(Each term:1 mark Each)

Model Answer

17330

Subject Code:

 e)	Write an algorithm to traverse a singly linked list.	4 M
	**NOTE: Description with example can also be considered.	
Ans:	 Algorithm to traverse a singly linked list 1. if (start==NULL) then display "linked list is empty". 2. Otherwise Visit each node of linked list and display its data till end of the list q=start // Assign a temporary pointer q to starting node while(q!=NULL) do Display q->data // display node information q=q->link; 	(Correct stepwise algorithm: 4 marks)
f)	Describe general tree and binary tree.	4 M
Ans:	General Tree: General tree	(General tree:2 marks, Binary tree:2
	 Root for the second /li>	

		4. I 6. 5. 5	Height of a Child) + 1 } Subtree of 1	bina binar	y tree	e is : Ho is orde	eight(T	<u>(</u>) = { 1	max (He	ight(L	eft Chi	ld), Heig	ght(Right					
		Attem	pt any two	o of t	he foll	lowing	:							16				
-	a)	Sort fo	llowing el	emer	nts by	radix s	sort alg	gorith	m					8M				
		87.3, 2	.34, 7.29, 3	3.59,	45.8,	3.79, 3.	20, 422	2.										
		{**Not withou	te: As radi It decimal	ix soi i.e. 8	rt can 73,23	not be a 4,729,3	applie 59,458	d on d 3,379,3	ecimal 1 20,422)	numbe **}	r, cons	ider all	number					
	Ans:	Sortin Pass	ng of Giver 1:	n Nu	mbers	5: -								(Correct sorting on given				
		Eleme	ent 0	1		2	3	4	5	6	7	8	9	numbers;8 marks)				
		873				8	373											
		234						234										
		729											729					
		359										170	359					
		458										458	270					
		379	220										379					
		320	320															
		Outpu Pass	t of Pass 1 5 2: Element	: 32	0,422, 1	873,234	4,458,7	729,35	9,379	6	7	8	9					
		_																
			320			320												
			422			422					072							
			8/3				224				8/3							
			<u> </u>				234		150									
			458 720			720			438									
			350			129		+	250									
		-	339						339		370							
			379								379							

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) WINTER-16 EXAMINATION **Model Answer**

Subject Code:

	Elemen	t 0	1	2	3	4	5	6	7	8	9
_	220				220		_				
_	<u> </u>				320	422					
-	729					422			720		
F	234			234	_				129		
_	458					458					
	359				359						
	873									873	
	379				379						
87	2	7	3	45	3	3	422				
087	002	007	003	045	003	003	422				
Pass 1:											
Eleme	ents	0	1	2	3	4	5	6	7	8	9
087									087		
002				002							
007									007		
003					003						
045							045				
003					003						
003				10.0	003						
				422							
422 Output	t of Pas	s 1: (02.423	2, 003, (003.003	3. 045.	087.007	'			
422 Output Pass 2:	t of Pas	s 1: 0	002, 422	2, 003, 0	003, 003	3, 045, 0	087,007	E		o	
422 Output Pass 2: Eleme	t of Pas	s 1: 0	002, 422	2, 003, 0	003, 003	3, 045, 0 4	087, 007	6	7	8	9
422 Output Pass 2: Eleme 002 422	t of Pas	s 1: 0 0 02	002, 422	2, 003, 0 2 422	3	3, 045, 0 4	087,007	6	7	8	9
422 Output Pass 2: Eleme 002 422 003	ents	0 02 03	1	2 , 003 , 0 2 422	3	3, 045, 0 4	087, 007 5	6	7	8	9
422 Output Pass 2: Eleme 002 422 003 003	ents	0 02 003 003	1	2 , 003 , 0 2 422	3	4	087, 007 5	6	7	8	9
422 Output Pass 2: Eleme 002 422 003 003 003	ents	0 002 003 003 003	1	2 2 422	3	4	087, 007	6	7	8	9
422 Output Pass 2: Eleme 002 422 003 003 003 045	ents	0 002 003 003 003	1	2 , 003 , 0 2 422	3	4 045	087, 007 5	6	7	8	9
422 Output Pass 2: Eleme 002 422 003 003 003 003 045 087	ents () () () () () () () () () () () () ()	0 002 003 003 003	1	2 2 422	3	4 045	5	6	7	8	9

	Elements	0	1 2	3	4	5	6	7	8	9	
		002		5		5	U	/	0		
	002	003									
	003	003									
	003	003									
	007	007									
	422	001			422						
	045	045									
	087	087									
ns:	Convert the of stack at o EXPRESS	e given i each stej ION P*	nfix expres o of conver Q ↑ R – S/′	ssion to p rsation. T +[U/V]	oostfix ex	pressio	on usin _i	g stac	k and tl	ne details	8M (Correct
											Postfir
		S	VMROL	S	TACK	RESI	TTAN	JT	٦		Expression
		S	CANNED	0	TACK	NES		11			marks)
		5]					_		
		Р]		Р					
		*		[*	Р					
		0		[]	*	PQ					
		Y N									
		\uparrow	-	[*↑	PQ					
		↑ R		[*↑ *↑	PQ PQR					
		↑ R -	- -	[[[[*↑ *↑ -	PQ PQR PQR↑	`*		-		
		↑ R - S		[·	* ↑ * ↑ -	PQ PQR PQR↑ PQR↑	** **S		-		
		\ R - S /			*↑ *↑ - -/	PQ PQR PQR1 PQR1 PQR1	** **S **S		-		
		↑ R - S / T	-		*↑ - - -/ -/	PQ PQR PQR1 PQR1 PQR1 PQR1	** **S **ST		-		
					*↑ 	PQ PQR PQR PQR PQR PQR PQR	** **S **ST **ST/-		-		
		\rightarrow R R - S / T + [- -		*↑ - - -/ -/ + +[PQ PQR PQR1 PQR1 PQR1 PQR1 PQR1 PQR1 PQR	** **S **ST **ST/- **ST/-	Ţ	-		
					*↑ 	PQ PQR PQR PQR PQR PQR PQR PQR PQR	**S **S **ST **ST/- **ST/- **ST/-U	J	-		
			- - - - - - - - - - - - - - - - - - -	1 [] [] [] [] [] [] [] [] [] [] [] [] []	*↑ - -/ -/ + +[+[+[/ +[/	PQ PQR PQR1 PQR1 PQR1 PQR1 PQR1 PQR1 PQR	** **S **ST **ST/- **ST/-U **ST/-U **ST/-U	J J J	-		
				1 1 1 1 1 1 1 1 1 1 1 1 1 1	*↑ 	PQ PQR PQR PQR PQR PQR PQR PQR PQR PQR P	**S **S **ST **ST/- **ST/-U **ST/-U **ST/-U **ST/-U	J J JV IV/			
		↓ R - S / T + [U / V] 1	- -	i i i i i i i i i i i i i i i i i i i	*↑ 	PQ PQR PQR1 PQR1 PQR1 PQR1 PQR1 PQR1 PQR	** **S **ST **ST/- **ST/-U **ST/-U **ST/-U **ST/-U	J J JV JV/ JV/+			

Subject Code:

Subject Code:

		 h) Note that only neighbor D of F is not pushed onto the stack, since D has already been pushed onto the stack. i) Pop and print the top element E and push onto the stack all the neighbors of D Print E STACK: D, Pop and print the top element D, and push onto the stack all the neighbors of D Print D STACK :empty j) The stack is now empty, so the DFS of G starting at J is now complete. Accordingly, the nodes which were printed K, G, C, F, E, D These are the nodes reachable from J. 								
6.		Attempt any two of the following:	16							
	a)	How stack is useful in reversing a list? write a C program to reverse a list using stack	8M							
	Ans:	Stack is useful to reverse a list. It can be simply done by pushing the individual elements of list one by one on the stack, till end of list is reached and there is no more elements to push on stack. The elements are then popped one by one till the stack is empty.	(Explanation: 4 marks, program: 4 marks (Any other relevant							
		Eg. Consider the list to reverse as 1, 2, 3, 4, 5, 6.	logic can be considered.)							
		This can be done using stack as:								
		Reverse of list is: 6,5,4,3,2,1 Program to reverse a list using stack. #include <stdio.h> #define TRUE 1 #define FALSE 0 struct Stack { int top; int top;</stdio.h>								
		int array[MAXSIZE]; } st; void initialize() {								


```
st.top = -1;
}
int isFull()
{
  if(st.top >= MAXSIZE-1)
    return TRUE;
  else
     return FALSE;
}
int isEmpty()
ł
if(st.top == -1)
   return TRUE;
else
   return FALSE;
}
void push(int num)
{
  if (isFull())
    printf("Stack is Full...\n");
  else
{
    st.array[st.top + 1] = num;
    st.top++;
  }
}
int pop()
{
  if (isEmpty())
    printf("Stack is Empty...\n");
  else
{
  st.top = st.top - 1;
     return st.array[st.top+1];
  }
}
void printStack()
if(!isEmpty())
{
   int temp = pop();
  printStack();
  printf(" %d ", temp);
   push( temp);
  }
```



```
void insertAtBottom(int item)
{
  if (isEmpty())
{
    push(item);
  }
else
{
    int top = pop();
    insertAtBottom(item);
        push(top);
  }
}
void reverse()
{
 if (!isEmpty())
{
    int top = pop();
    reverse();
    insertAtBottom(top);
  }
}
int getSize()
{
return st.top+1;
}
int main()
{
  initialize(st);
  push(1);
  push(2);
  push(3);
  push(4);
  push(5);
  printf("Original Stack\n");
  printStack();
  reverse();
  printf("\nReversed Stack\n");
  printStack();
  getch();
  return 0;
}
```


Subject Code:

	Output	
	Original Stack 1 2 3 4 5 Reversed Stack 5 4 3 2 1	
b) V	Write a program to calculate number node in binary search tree.	8M
Ans:	<pre>#include<stdio.h> struct tree { struct tree *lchild ; int data ; struct tree *rchild ; }; struct tree *root ,*new, *curr ,*prev ; int ch,n ; char c ; main() { do {</stdio.h></pre>	(Correct program: 8 marks) (Any other relevant logic can be considered.)


```
case 2 : printf("\nThe number of nodes in tree are :%d\n",count(root));
     getch();
     break :
case 3 : exit(0);
   ł
 } while(ch != 3 );
return(0);
}
/* FUNCTION TO CREATE A TREE */
int create()
{
 printf("\nEnter the Root Element ");
 scanf("%d",&n);
 root = ( struct tree * ) malloc(sizeof(struct tree ));
 root -> lchild = NULL ;
 root -> data = n;
 root -> rchild = NULL ;
 printf("\nDo you want to continue ? ");
 c = getch();
 while ( c == 'y' || c == 'Y' )
  printf("\nEnter the next Element ");
  scanf("%d",&n);
  new = ( struct tree * ) malloc(sizeof(struct tree ));
  new \rightarrow lchild = NULL ;
  new -> data = n;
  new -> rchild = NULL ;
  curr = root;
  while ( curr != NULL )
  {
    prev = curr;
    if (curr -> data > new -> data)
curr = curr -> lchild ;
    else
curr = curr -> rchild;
  }
  if( prev -> data > new -> data )
   prev -> lchild = new ;
  else
   prev -> rchild = new ;
  printf("\nDo you want to continue ? ");
  c = getch();
 }
}
```


	<pre>int count(struct tree *p) { if(p == NULL) return(0); else if(p->lchild == NULL && p->rchild == NULL) return(1); else return(1 + (count(p->lchild) + count(p->rchild))); } </pre>	
c)	Consider the graph 'G' in fig.	8M
	i) Find all simple paths from C- A.	
	ii) Find all simple paths from D-B.	
	iii) Find indeg [B] and outdeg[C].	
	iv) Find the adjacency matrix A for graph.	
	v) Give the adjacency list representation of graph.	
Ans:	i) Find all simple paths from C- A.	/•
	(a) $C \to A$ (b) $C \to D \to A$	(i:1 mark,ii:1 mark,iii:2
	ii) Find all simple paths from D-B	marks,iv:2
	(a) $D \rightarrow C \rightarrow B$	marks,v.2 marks)
	(b) D-> C-> A-> B	,
	(c) $D \to A \to B$	
	iii) Find indeg [B] and outdeg[C].	
	(a) indeg [B]: 2 (b) outdeg [C]: 3	

Subject Code:

